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Abstract
Reducing the energy footprint of warehouse-scale computer

(WSC) systems is key to their affordability, yet difficult to achieve
in practice. The lack of energy proportionality of typical WSC
hardware and the fact that important workloads (such as search)
require all servers to remain up regardless of traffic intensity ren-
ders existing power management techniques ineffective at reduc-
ing WSC energy use.

We present PEGASUS, a feedback-based controller that sig-
nificantly improves the energy proportionality of WSC systems,
as demonstrated by a real implementation in a Google search
cluster. PEGASUS uses request latency statistics to dynamically
adjust server power management limits in a fine-grain manner,
running each server just fast enough to meet global service-level
latency objectives. In large cluster experiments, PEGASUS re-
duces power consumption by up to 20%. We also estimate that
a distributed version of PEGASUS can nearly double these sav-
ings.

1 Introduction
Warehouse-scale computer (WSC) systems support popular

online services such as search, social networking, webmail,
online maps, automatic translation, and software as a service
(SaaS). We have come to expect that these services provide
us with instantaneous, personalized, and contextual access to
petabytes of data. To fulfill the high expectations for these ser-
vices, a rapid rate of improvement in the capability of WSC sys-
tems is needed. As a result, current WSC systems include tens of
thousands of multi-core servers and consume tens of megawatts
of power [8].

The massive scale of WSC systems exacerbates the chal-
lenges of energy efficiency. Modern servers are not energy pro-
portional: they operate at peak energy efficiency when they are
fully utilized, but have much lower efficiencies at lower utiliza-
tions [7]. While the average utilization of WSC systems for con-
tinuous batch workloads can be around 75%, the average utiliza-
tion of shared WSC systems that mix several types of workloads,
including online services, may be between 10% and 50% [8]. At
medium and low utilizations, the energy waste compared to an
ideal, energy proportional system is significant. To improve the
cost effectiveness of WSC systems, it is important to improve
their energy efficiency at low and moderate utilizations.

For throughput-oriented, batch workloads such as analytics,
there are several ways to improve energy efficiency at low utiliza-
tion. We can consolidate the load onto a fraction of the servers,
turning the rest of them off [44, 25]. Alternatively, we can tem-
porarily delay tasks to create sufficiently long periods of idleness
so that deep sleep modes are effective [28, 29]. Unfortunately,
neither approach works for on-line, data-intensive (OLDI) work-
loads such as search, social networking, or SaaS. Such user-
facing services are often scaled across thousands of servers and
access distributed state stored across all servers. They also oper-

ate with strict service level objectives (SLOs) that are in the range
of a few milliseconds or even hundreds of microseconds. OLDI
workloads operate frequently at low or medium utilization due to
diurnal patterns in user traffic [29]. Nevertheless, server consoli-
dation is not possible, as the state does not fit in a small fraction
of the servers and moving the state is expensive. Similarly, delay-
ing tasks for hundreds of milliseconds for deep sleep modes to
be practical would lead to unacceptable SLO violations. Even at
very low utilization, OLDI servers receive thousands of requests
per second. Finally, co-scheduling other workloads on the same
servers to utilize spare processing capacity is often impractical as
most of the memory is already reserved and interference can lead
to unacceptable degradation on latency SLO [20, 27, 14, 46].

A promising method to improve energy efficiency for OLDI
workloads at low or medium utilization is to scale the servers’
processing capacity to match the available work. We can re-
duce power consumption by scaling voltage and clock frequency
(DVFS) or the number of active cores in the server. Tradition-
ally, DVFS is controlled by monitoring CPU utilization, raising
the frequency when utilization is high and decreasing it when it
is low. We demonstrate that DVFS schemes that use CPU utiliza-
tion as the only control input are ineffective for OLDI workloads
as they can cause SLO violations. We observe that OLDI work-
loads exhibit different latencies for the same CPU utilization at
different CPU frequencies. This makes it particularly difficult
to correlate CPU utilization to request latency at different DVFS
settings and complicates the design of robust control schemes.

We advocate making OLDI workloads more energy efficient
across the utilization spectrum through fine-grain management
of the servers’ processing capacity based on the observed, end-
to-end, request latency. The proposed iso-latency power man-
agement technique adjusts server performance so that the OLDI
workload “barely meets” its SLO goal. By directly using the
overall request latency and SLO targets, instead of the inaccurate
and indirect metric of CPU utilization, we can achieve robust per-
formance (no degradation of the SLO), while saving significant
amounts of power during low and medium utilization periods.
We show that iso-latency power management achieves the high-
est savings when using a fine-grain CPU power control mecha-
nism, Running Average Power Limit (RAPL) [5], which allows
the enforcement of CPU power limits in increments of 0.125W.

The specific contributions of this work are the following.
We characterize Google workloads, including search, with real-
world anonymized traffic traces to show the high cost of the
lack of energy proportionality in WSC systems. We also quan-
tify why power management techniques for batch workloads or
utilization-based DVFS management are ineffective for OLDI
workloads. We show that latency slack is a better metric com-
pared to CPU utilization when performing power saving deci-
sions. Next, we characterize the potential of iso-latency power
management using RAPL and show that it improves energy pro-
portionality and can lead to overall power savings of 20% to
40% for low and medium utilization periods of OLDI workloads.



Since the cluster is operated at low and medium utilizations for
nearly half the time, iso-latency translates to significant power
savings. The characterization of iso-latency demonstrates some
non-intuitive results such as: a) aggressive power management
works for tail latency and can be applied with minimal extra
power at scale; b) ultra-low latency services benefit even more
from aggressive power management techniques. Finally, we de-
scribe PEGASUS, a feedback-based controller that implements
iso-latency power management. For search, PEGASUS leads to
overall power savings of up to 20% in clusters with thousands of
servers without impacting the latency SLO. In addition, PEGA-
SUS makes clusters nearly energy proportional for OLDI work-
loads in the 20% to 50% utilization range. If we discount the idle
power at zero utilization (due to power for fans, power supplies,
DRAM refresh etc.), PEGASUS meets and often beats energy
proportionality in this range. We also estimate that a distributed
version of PEGASUS that identifies less utilized servers in the
cluster to further reduce power on can achieve the full potential
of iso-latency power management, or nearly 40% power savings.
To the best of our knowledge, this is the first study to achieve
such power savings on an actual warehouse-scale deployment
and the first to evaluate fine-grained versus coarse-grained power
management tied to application latency SLO metrics.

2 On-line, Data Intensive Workloads
2.1 Background

On-line, data intensive (OLDI) workloads such as search, so-
cial networking, and SaaS represent the vast majority of activity
on the Internet. They are driven by user requests that require
mining through massive datasets and then returning combined
results from many servers in near real-time. Hence, they parti-
tion the data across a large number of servers and use multi-tier,
high fan-out organizations to process each request. For instance,
in web search, processing a user query involves fanning out the
query through a large tree of nodes [12]. In addition, DRAM and
Flash memory are often used for fast access to data.

OLDI workloads are quite different from large-scale batch
workloads like MapReduce. In addition to high throughput re-
quirements, OLDI workloads have strict requirements on end-
user latency. In our search example, since the rendered content
can only be sent back to the user after all steps have completed, a
slowdown in any one server in the tree will lead to either a slow-
down for the user or degraded results, either of which result in
poor end-user experience. Social networking and SaaS exhibit
similar behavior in terms of high fanout and a dependence on
the slowest component. It is well understood that an additional
server-side delay of just 400msec for page-rendering has a mea-
surable impact on user experience and ad-revenue [40]. More-
over, the large number of users and requests makes it important
to optimize tail latency, not just average latency. Achieving low
tail latency at the scale and complexity of OLDI workloads is
quite difficult [13], making power management challenging.

2.2 OLDI Workloads for This Study
We use two production Google services in this study.

search: We evaluate the query serving portion of a production
web search service. search requires thousands of leaf nodes all
running in parallel in order to meet the stringent SLO, which is
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Figure 1. Configurations for search and memkeyval.

on the order of tens of milliseconds. Figure 1 shows an example
search topology: a user query is first processed by a front-end
server, which then eventually fans out the query to a large num-
ber of leaf nodes [12]. The search index is sharded across all of
the leaf nodes and each query is processed by every leaf. Rele-
vant results from each leaf are then aggregated, scored, ordered,
and sent to the front-end to be presented to the user. Most of the
processing is in the leaf nodes that mine through their respective
shards. Consequently, leaf nodes account for the vast majority of
nodes in a search cluster and are responsible for an overwhelm-
ing fraction of power consumed. To drive search, we use an ex-
ample serving index from Google. We use an anonymized trace
of real user queries for load generation. We can also generate a
controlled amount of load by replaying the query log at different
QPS (queries per second) levels.
memkeyval: We also evaluate an in-memory key-value store
used in production services at Google. Functionally, it is similar
to memcached, an open source in-memory key-value store [3].
While memkeyval is not directly user-facing, it is used in the
backends of several Google web services. Other large-scale
OLDI services, such as Facebook and Twitter, use memcached
extensively in user-facing services as well, making this an impor-
tant workload. Figure 1 shows an example of how memkeyval is
used by user-facing services. memkeyval is architected such that
each memkeyval server is independent from all other memkeyval
servers. Compared to search, there is significantly less process-
ing per request and no direct fan out of requests. Instead, the
fan-out occurs at a higher tier, where the web tier or application
logic can issue tens or hundreds of requests to satisfy a single
user request. Because of this, memkeyval has even tighter SLO
latency constraints than search, typically on the order of tens or
hundreds of microseconds. Hence, memkeyval adds to our anal-
ysis an example of an ultra-low latency workload. To generate
load for memkeyval, we captured a trace of requests from produc-
tion services, which we can replay at varying QPS speeds.

2.3 Power Management Challenges
Figure 2 shows the diurnal load variation for search on an ex-

ample cluster. Load is normalized to the peak capacity of the
cluster and power is normalized to the power consumed at peak
capacity. There are several interesting observations. First, the
cluster is not overprovisioned as it is highly utilized for roughly
half the day, demonstrating that both the number and type of
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Figure 2. Example diurnal load and power draw for a search
cluster over 24 hours. For a perfectly energy proportional clus-
ter, power draw would perfectly track load (QPS). Dynamic
EP (Power) indicates the hypothetical amount of power con-
sumed if the idle power is assumed to be constant and the
active power is energy proportional.

servers are well tuned for the peak of this workload. However,
load is not constant. There is a very pronounced trough that rep-
resents a long period of low utilization. Second, the cluster ex-
hibits poor energy proportionality during off-peak periods. Ide-
ally, power consumption should closely track load. However, the
actual power consumed is much higher: at 30% utilization the
cluster draws 70% of its peak power. Since a major reason for
lack of proportionality is the non-zero idle power (due to various
components such as fans, power supplies, memory refresh, etc.),
we also define a relaxed energy proportionality that only looks
at the energy proportionality of dynamic power by discounting
the idle power draw at 0% utilization. The Dynamic EP in Fig-
ure 2 is defined such that the power at 100% utilization is 100%
of peak power, the power at 0% utilization is the idle power of
the cluster, and all powers in between fall on a line connecting
the two points. Dynamic EP represents the expected power draw
of a cluster assuming that idle power cannot be removed and is
often used to model server power [8]. Even after discounting
idle power, the cluster draws far more power than expected at
low utilizations. This is the opportunity gap we target: reducing
the operating cost of large WSC systems by making them more
energy proportional during periods of low or medium utilization.

Existing power management techniques for WSC systems
cannot address this opportunity gap for OLDI workloads. Sev-
eral techniques advocate consolidating workloads onto a frac-
tion of the available servers during periods of low utilization
so that the remaining servers can be turned off [20]. Hence,
while each server is not energy proportional, the WSC system
as a whole becomes nearly energy proportional. Nevertheless,
workload consolidation is difficult for OLDI workloads as the
number of servers is set by both peak processing requirements
and data storage requirements. For instance, a search cluster is
sized to hold the entire search index in memory, and individual
nodes cannot be powered off without losing part of the search

index, which will impact search quality. Even if spare memory
storage is available, moving tens of gigabytes of state in and out
of servers is expensive and time consuming, making it difficult
to react to fast or small changes in load. Other techniques focus
on individual servers and attempt to maximize idle periods so
that deep sleep power modes can be used. For instance, Power-
Nap would need to batch tasks on each server in order to create
sufficiently long idle periods [28, 29]. Full system idle power
modes, such as ACPI S3, have transition times on the order of
seconds [29]. Since OLDI workloads have latency requirements
in the order of milliseconds or microseconds, use of idle power
modes produces frequent SLO violations [29]. Moreover, OLDI
workloads usually have a large fan-out (see Figure 1) when pro-
cessing user queries. A single user query to the front-end will
lead to forwarding of the query to all leaf nodes. As a result,
even a small request rate can create a non-trivial amount of work
on each server. For instance, consider a cluster sized to handle a
peak load of 10,000 queries per second (QPS) using 1000 servers.
Even at 10% load, each of the 1000 nodes are seeing on average
one query per millisecond. There is simply not enough idleness
to invoke some of the more effective low power modes.

3 Energy Proportionality Analysis for OLDI
3.1 Methodology

To understand the challenges of improving energy efficiency
for OLDI workloads during low utilization periods, we collected
power and latency measurements from a cluster with Sandy
Bridge CPUs running production workloads. The power mea-
sured is full system power of the cluster and is equivalent to the
power draw at the wall socket. For search, latency was measured
at the root of the fan-out tree as opposed to the latency at each
individual leaf node. By measuring as close to the end-user as
possible, we have a more accurate assessment of the latency of
the entire cluster. For search, we use the 30 second moving av-
erage latency (µ/30s) as one of the latency SLO metrics. Since
we measure latency at the root where the effects of slow leafs are
already seen, using mean latency at the root is an acceptable met-
ric. We also collected 95%-ile and 99.9%-ile tail latencies at the
root for search as a sensitivity analysis for further insights. For
memkeyval, we measure mean latency, as well as 95%-ile and
99%-ile tail latencies. This is because memkeyval is typically
used in such a way that the higher-level service waits for several
parallel memkeyval requests to several servers to complete before
being able to return a result. Thus, the overall latency of the en-
tire memkeyval service is dependent on the slowest server, which
is estimated by the tail latency of an individual server.

3.2 Analysis of Energy Inefficiencies
Figures 3 and Figure 4 show the total cluster power and the

CPU-only power respectively at varying loads for search and
memkeyval. As expected, the total cluster power consumed is far
higher than the power consumed by an ideal, energy proportional
cluster. We also plot the power draw of a cluster that exhibits
energy proportional behavior on its active power (Dynamic EP).
Eliminating idle draw due to fans, power supplies, and leakage
power is quite difficult in the absence of sufficiently long idle pe-
riods. However, we expect that the cluster should be fairly close
to energy proportional once idle power is removed. Figure 3
shows this is not the case in practice. The total cluster power con-

3



0 20 40 60 80 100
% of peak load

0

20

40

60

80

100

%
 o

f p
ea

k 
po

w
er

search full system power

0 20 40 60 80 100
% of peak load

0

20

40

60

80

100

%
 o

f p
ea

k 
po

w
er

memkeyval full system power

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0

Measured EP Dynamic EP

Figure 3. Total cluster power for search and memkeyval at var-
ious loads, normalized to peak power at 100% load.
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Figure 4. CPU power for search and memkeyval at various
loads, normalized to peak CPU power at 100% load.
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Figure 5. Characterization of CPU sleep states for search and
memkeyval at various utilizations.

sumed is still much higher than the Dynamic EP power across
all utilization points for both workloads. While idle power is a
major contributor to the energy proportionality problem, it alone
does not account for the large gap between the power behavior
of current clusters and the behavior of energy proportional clus-
ters. To improve energy proportionality, we focus on addressing
active power draw when the cluster is underutilized. Improving
idle power is important but outside the scope of our work.

Since the CPUs are the largest contributors to server power in
modern servers (40% of total power at idle and 66% at peak [8]),
we focus on CPU power as measured directly using on-board sen-
sors in the servers (Figure 4). The power consumed by the CPU
is not energy proportional and has the same shape as the power
curves of the entire cluster (Figure 3). This establishes that the
CPU is a major contributor to the non-energy proportionality for
these OLDI workloads, even if idle power is ignored. Therefore,
we focus on understanding the cause of non-energy proportion-
ality on the CPU and how to reduce the power consumed by the
CPU in the context of making the entire WSC system more en-
ergy proportional.

The default CPU power management approach for the servers
we study is to execute at the highest available CPU active power
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Figure 6. Characterization of latencies of search and memkey-
val at various utilizations. The latency for each service is nor-
malized to the average latency of the service at max load.

state (p-state), followed by idling in some sleep state. Namely,
the power saving driver in use is intel_idle [1]. We character-
ized the fraction of time each core spends active and the fraction
of time it spends in various sleep states (c1, c3, c7) in Figure 5.
In c1, the core is clock gated. In c3, the L1 and L2 caches are
flushed and clock gated. In c7, the core is power gated [37]. c1,
c3, and c7 are ordered in increasing order of power savings [4].
c1, c3, and c7 have wake up latencies of almost zero, 10µs, and
100µs [4, 29]. We observe that both search and memkeyval do
not spend very much time in the low power c7 sleep state. The
vast majority of idle time is spent in the c1 sleep state, which
does not save very much power but has almost zero exit latency.
This is because in OLDI workloads, idle periods are particularly
short even at low utilization, providing little opportunity to ex-
ploit deeper sleep states with higher exit latencies [29]. The idle
behavior of OLDI workloads contrasts sharply with application
behavior for mobile and client devices, where racing to idle is
effective because of long idle times between short bursts of ac-
tivity [33]. These observations motivate us to improve propor-
tionality by improving active mode power consumption and by
reducing the (ineffective) CPU idle time for OLDI workloads.

Figure 6 provides a clue towards achieving this goal. It shows
how the various latencies of search and memkeyval are increas-
ing with the amount of load on the cluster. It is important to
remember that SLO targets for user or internal requests are set
at a fixed value. These targets are independent of the immediate
load on the cluster. Furthermore, SLO targets are typically set
right at the knee of the latency/throughput curve. At loads be-
low these inflection points, we observe that: a) there is still sig-
nificant headroom between the measured latency and the SLO
target; b) workload developers and system operators only care
about avoiding SLO latency violations. This stems from the fact
that SLO targets represent performance that is acceptable to the
operator. The gap between the measured latency and the SLO
target suggests that there are energy inefficiencies caused by the
cluster unnecessarily overachieving on its SLO latency targets.
We exploit this observation to reduce power: we slow down the
CPU as much as possible under the current load in order to save
power without violating the overall workload SLO target.

3.3 Shortcomings of Current DVFS Schemes
It is important to understand why existing power management

systems based on Dynamic Voltage Frequency Scaling (DVFS),
such as Linux’s built-in cpufreq driver, cannot be used exploit
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the latency slack at medium and low utilization in order to save
power for OLDI workloads. These systems operate by keeping
the CPU utilization within a fixed range by changing the CPU’s
operating frequency through p-states. For example, the conserva-
tive governor in Linux’s cpufreq driver keeps the CPU utilization
within 20% to 95%. When CPU utilization goes below/above
the low/high threshold for a certain amount of time, the driver
will transition to the next lower/higher p-state. However, this ap-
proach leads to frequent latency spikes for OLDI workloads. We
ran search with the 24-hour trace with cpufreq enabled. Figure 7
shows significant latency spikes and SLO violations as cpufreq
fails to transition to the proper p-state in several cases. This is the
reason that the baseline power management policy in the search
cluster does not use cpufreq and DVFS control.

We demonstrate that the inability of cpufreq to lower power
without causing SLO violations is because CPU utilization is a
poor choice of control input for latency critical workloads. Fig-
ure 8 shows that the latency of search is different at the same
CPU utilization across different p-states. Therefore, CPU uti-
lization alone is fundamentally insufficient to estimate latency.
No amount of tuning CPU utilization thresholds would allow a
DVFS controller to achieve optimal power savings without SLO
violations. Depending on the workload complexity and its SLO
targets, the thresholds will be different and would vary for each

p-state. Thus, we argue that to save power without SLO viola-
tions, we need to directly use application-level latency as the in-
put to power control. Note that the use of CPU utilization as the
only control input is a shortcoming not only limited to cpufreq:
several research proposals [15, 17, 31, 35], Intel’s demand-based
switching mechanism [11], and most OS implementations also
use CPU utilization as the sole control input.

Another shortcoming of existing DVFS systems is that they
use p-states to manage the tradeoff between power and perfor-
mance. However, p-state based power management is extremely
coarse grained. For instance, dropping from p0 to p1 would
disable TurboBoost, which can result in a significant frequency
drop, up to 700MHz for an example Xeon E5-2667v2 CPU [2].
This means that using p-states alone misses on opportunities for
power savings. For instance, in Figure 8, at utilization ranges
between 65%-85%, the highest power p-state (p0) must be used,
as the use of p1 would cause SLO violations. This motivates the
need for fine-grain CPU power management in hardware.

4 Iso-latency Power Management
We propose a power management policy called iso-latency

that addresses the shortcomings of existing DVFS systems. At
a high level, it monitors the end-to-end request latencies of an
OLDI service and adjusts the power settings of all servers so
that SLO targets are barely met under any load. Iso-latency is
inherently a dynamic policy as there is no one CPU p-state that
will give optimal power savings while preventing SLO violations
for all loads and all workloads. Intuitively, iso-latency is making
a trade-off between latency and power. Figure 6 shows that, at
low and medium utilization, there is latency headroom that can
be exchanged for power savings without impacting SLO targets.

4.1 Iso-latency Potential
Before we discuss our implementation of iso-latency, we an-

alyze the potential benefits for our OLDI workloads and servers.
To adjust the power settings of servers, we use a fine-grain

power management feature introduced in recent Intel chips
named Running Average Power Limit (RAPL) [5]. The RAPL
interface allows the user to set an average power limit that the
CPU should never exceed. On the servers we evaluate, we used
the default time period to average over (45ms). RAPL can be
programmed dynamically by writing a model specific register
(MSR), and changes to the power limit take effect within less
than 1 millisecond. The interface exports a fine grained power
control knob, as the power limit can be set in increments of
0.125W. RAPL enforces this power limit mainly by scaling the
voltage and frequency but can also modulate the CPU frequency
to achieve average frequencies in between p-state frequencies.
Compared to p-states, RAPL allows us to exploit a far wider
spectrum of power-performance tradeoffs, which is critical to de-
termining the optimal operating point for iso-latency.

To understand the potential of iso-latency for search and
memkeyval, we sweep the RAPL power limit at a given load to
find the point of minimum cluster power that satisfies the SLO
target. For sensitivity analysis, we use several SLO targets. The
first SLO target is the latency of the workload at maximum uti-
lization. This is a more relaxed constraint, as latency is high at
peak throughput (past the knee of the latency-load curve). The
second SLO target is more aggressive, as it is the latency mea-
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Figure 9. Characterization of power consumption for search and memkeyval for iso-latency with various latency SLO metrics. The
SLO target is the latency at peak load (relaxed)

sured at the knee of the curve. For search, the knee is at 80% of
peak utilization, while for memkeyval, the knee is at 60% of peak
utilization. Figures 9 and 10 compare the baseline power con-
sumption to that of a cluster managed by an ideal iso-latency con-
troller that always finds the minimum power setting that avoids
SLO violations. The right column of the figures shows the power
savings using iso-latency over the baseline. For clarity, we omit
the 95%-ile tail latency result for both search and memkeyval,
as it is almost indistinguishable from the 99.9%-ile latency and
99%-ile latency curves for search and memkeyval, respectively.

The most salient observation is that iso-latency is able to save
a significant amount of power compared to the baseline. In the
utilization range of 20% to 80%, iso-latency can save 20% to
40% power and serve the same load without SLO violations.
This result holds for both OLDI workloads, even for the aggres-
sive SLO target (Figure 10), demonstrating that even a relatively
small amount of latency headroom can be turned into large power
savings. A physical analogy can be made to explain this result.
The baseline can be compared to driving a car with sudden stops
and starts. iso-latency would then be driving the car at a slower
speed to avoid accelerating hard and braking hard. The second
way of operating a car is much more fuel efficient than the first,
which is akin to the results we have observed.

Another interesting observation from Figures 9 and 10 is that
iso-latency can save significant amounts of power even when
the SLO target is enforced on tail latency instead of on mean

latency. For both search and memkeyval, iso-latency does not
need to spend too much additional power to meet tail latency
constraints, such as low 99.9%-ile latency. This is because most
of the latency is due to queueing delay, which is responsible for
the sharp knee in the latency curves [13]. Iso-latency needs to
run the cluster just fast enough to avoid excessive queueing de-
lays. While it does take a little more power to avoid queueing
delay effects in tail latency, it is not significantly more power
than to avoid excessive increases in mean latency.

It is important to note that iso-latency compares well to ide-
alized, energy proportional clusters. For the relaxed SLO target
(Figure 9), iso-latency leads to lower power consumption than an
energy proportional (EP) cluster at utilizations higher than 50%.
The explanation is fairly simple: by using DFVS to reduce the
CPU speed, iso-latency achieves better than linear reductions in
power (P = CV 2F) by reducing F almost linearly and V by sig-
nificant amounts as well. At utilizations lower than 50%, the
ideal EP cluster does better than iso-latency because the total
power consumed is dominated by idle power. When idle power
is removed (Dynamic EP), iso-latency performs as well as, if not
better, than Dynamic EP at all utilizations. When we consider ag-
gressive SLO targets (Figure 10), iso-latency matches the ideal
EP curve above 60% utilization and outperforms the Dynamic
EP curve above 30% utilization. A tighter SLO latency causes
the power curves to be shifted up; nevertheless, iso-latency still
saves a significant amount of power over the baseline.
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Figure 10. Characterization of power consumption for search and memkeyval for iso-latency with various latency SLO metrics. The
SLO target used is more aggressive compared to Figure 9.

Iso-latency leads to higher power savings for memkeyval com-
pared to search, even though the former has tighter absolute la-
tency constraints (µsec compared to msec). Recall the charac-
terization of idle times from Figure 5. We see that memkeyval
cannot take advantage of deeper sleep states and can only use
c1 because of the high request arrival rate, even at 10% load.
On the other hand, because search has a lower request arrival
rate, the baseline can take advantage of more power efficient
sleep states. Thus, we expect iso-latency to benefit ultra-low-
latency, high throughput workloads more, because it can convert
the “race to (inefficient) idle” scenario to a more energy efficient
“operate at a moderate but constant rate”.

4.2 Using Other Power Management Schemes
As mentioned earlier, we can use the iso-latency policy with

other power management mechanisms such as p-states. While
we believe that RAPL is a better management mechanism be-
cause it allows for fine-grain control, it is not currently available
on all CPU chips. Another power management mechanism is to
consolidate the workload onto a sufficient subset of the cores
in each CPU during times of low utilization. The remaining
cores can be powered off (i.e., put into c7 sleep state) so that
power is saved without experiencing SLO violations. We charac-
terize iso-latency with CPU consolidation in Figure 11. Instead
of sweeping RAPL settings to find the most appropriate for each
utilization level, we now sweep the number of active cores per
server. We leave the CPU operating at its highest p-state in order
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Figure 11. Comparison of iso-latency with core consolidation
to RAPL. Measured total cluster power consumed by search at
various utilizations, normalized to peak power at 100% load.

to maximize the number of cores that can be turned off. The re-
sults in Figure 11 are for search using the relaxed SLO target on
the mean latency. These are the easiest constraints one can put
on iso-latency to obtain maximum power savings.

Figure 11 shows that core consolidation is not as effective
as RAPL when used as a power management scheme for iso-
latency. The static power savings achieved by shutting down
cores are eclipsed by the far larger dynamic power required to
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operate the remaining cores at a high frequency. This is the basic
phenomenon driving the multi-core evolution: assuming suffi-
cient parallelism, many slow cores is more energy efficient than
fewer faster cores. Nevertheless, it is still interesting to explore
how core consolidation can be combined with RAPL (DVFS con-
trol) to create a better power management mechanism. Depend-
ing on the exact tradeoffs between static and dynamic power at
low frequencies, it may be better to have a few moderately fast
cores as opposed to many slow cores. This is an interesting trade-
off to examine in future work.

5 A Dynamic Controller for Iso-latency
Having established the potential of iso-latency as a power

management policy, we now discuss the implementation of a
cluster-wide, iso-latency controller for OLDI workloads.

5.1 PEGASUS Description
PEGASUS (Power and Energy Gains Automatically Saved

from Underutilized Systems) is a dynamic, feedback-based con-
troller that enforces the iso-latency policy. At a high level, PE-
GASUS is a feedback-based controller that uses both the mea-
sured latency from the OLDI workload and the SLO target to ad-
just the RAPL settings in a fine-grain manner across all servers.
During periods with significant latency headroom, PEGASUS
will automatically lower the power limit until the latency head-
room has been reduced. Conversely, when measured latency is
getting close to the SLO target, PEGASUS will raise the power
limit until there is sufficient latency headroom. PEGASUS al-
ways keeps a small latency headroom in order to ensure stability
and robust handling of load increases. This latency headroom is
configurable and determined based on the gradient of load spikes.
Our current implementation of PEGASUS assumes a uniform
cluster and thus applies the same RAPL setting across all servers.
We discuss the implications of this assumption in Section 5.2.2.

Figure 12 shows a diagram of PEGASUS. The Application
Performance Monitor monitors workload latency and reports the
amount of headroom to the PEGASUS controller. This compo-
nent can piggyback on performance monitoring infrastructure al-
ready in OLDI workloads. The PEGASUS controller in turn is re-
sponsible for determining the proper power adjustment based on
the latency headroom, which it then periodically communicates
to each of the local agents running on each server. The power
adjustment is informed by the power savings policy, which is
tailored to the OLDI workload. The frequency at which the PE-
GASUS controller sends updated power limits to the local agent
is determined by how long it takes before the effects of the new
power limit are seen in the application latency. This delay is ap-
plication dependent, due to many workload specific factors such
as the inertia of queries already in flight in the cluster, the delay
in the latency measurement system, etc. The PEGASUS con-
troller will send updates at a fixed frequency to the local agents,
even if the power limit is staying constant. Finally, the local
agents set the power limit from the PEGASUS controller using
the RAPL interface. In case of a communication breakdown be-
tween the PEGASUS controller and the local agents, the local
agents will automatically default to maximum power. Hence,
PEGASUS failures cannot jeopardize the SLO for the workload.

The PEGASUS controller is very simple, around 200 lines
of code, and has modest resource requirements. In its current
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Figure 12. Block diagram showing high level operation and
communication paths for PEGASUS.

form, it is based on a multi-step bang-bang controller that outputs
a ∆(PowerLimit%) depending on the latency headroom. The
thresholds and the control outputs are workload dependent and
are determined empirically. We describe control parameters for
search in Table 1 For our experiments, we ran the PEGASUS
controller on a single core of a single server. In our experiments,
running on one core is more than enough to control the thousands
of servers in the cluster. We profiled the performance of the PE-
GASUS controller, and determined that most of the time (> 90%)
is spent on transmitting the network packets to the local agents.
When scaled to thousands of servers, the PEGASUS controller
takes approximately 500 milliseconds to send out the command
packet to all of the local agents. This delay can be shortened by
parallelizing the networking portion of the PEGASUS controller
to use multiple cores. However, for our experiments, the 500 mil-
lisecond delay does not appear to negatively impact the control
scheme nor the performance of the OLDI workload.

We designed PEGASUS to be a general controller that works
with any OLDI workload. PEGASUS is separated into two dis-
tinct components: policy (control parameters) and enforcement
(actuation). The policy component is responsible for determin-
ing how much to adjust the CPU power limit. The policy portion
is workload specific, and is dependent on the characteristics of
the workload, such as the latency SLO metric (mean or tail la-
tency) as well as the sensitivity of the workload to CPU power.
For instance, search with its SLO target measured as the mean
latency over 30 seconds will need to make smaller power ad-
justments compared to the same workload with its SLO target
measured as the mean latency over 60 seconds. This is because
PEGASUS needs to be more conservative when managing work-
loads with tighter SLO constraints, as there is less room for er-
ror. The enforcement portion is workload agnostic. It applies
the CPU power limit determined by the policy of PEGASUS
uniformly across all nodes in the cluster. Once the local agent
receives a request from the central controller, it only takes mil-
liseconds before the new power limit is enforced by RAPL.

5.2 PEGASUS Evaluation
We evaluate PEGASUS on the more challenging of the two

OLDI workloads, search. We chose search because it is a com-
plete, large-scale, OLDI workload with high fan-out across mul-
tiple tiers. In addition, because search is a complete service, mea-
suring the overall latency of a user query is straightforward, as it
is the latency at the root of the distribution tree. Moreover, the
power savings potential for search is lower than that for memkey-
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Figure 13. Results of running PEGASUS for search on the small cluster.

val (see Figure 10). Thus, evaluating PEGASUS on search paints
a more conservative and realistic picture of its capabilities.

The evaluation setup closely approximates production clus-
ters and their load for search. We use the same kind of servers
and the same number of servers used for production websearch.
We then populate these servers with portions of the Google
search index. We generate search queries using an anonymized
search query log containing searches from actual users. To eval-
uate a realistic mix of high and low utilization periods, we use a
24-hour load trace shown in Figure 2. Since we measure latency
as close as possible to the user (root of the tree), we use the mean
latency over a rolling 30-second window as the latency SLO met-
ric. The SLO target is defined as the latency of search when op-
erating at 90% of the maximum possible load supported by the
cluster. To provide the necessary headroom for stability and load
changes, we set the target latency for PEGASUS at 95% of the
actual SLO target. For search, we only manage the leaf nodes,
as they are by far the largest contributor to power consumption.

We describe the PEGASUS policy we used for search. It is
a very conservative policy that aims to slowly reduce the power
limit without causing any SLO violations along the way. The pol-
icy uses both the SLO latency (30 second moving average) and
the instantaneous latency as inputs. The actions the policy takes
based on the latency headroom is summarized in Table 1. The
table lists rules in decreasing priority, i.e. only the first match-
ing rule is applied. The rationale for using both SLO latency
and instantaneous latency is that the instantaneous latency is a
good early warning signal that lets PEGASUS know if an SLO
violation might occur. This gives PEGASUS the opportunity to
gracefully increase the power limit to stave off SLO violations
before they happen. In addition, using the instantaneous latency
allows PEGASUS to update the power limit more frequently, as
opposed to waiting for the 30 second moving average to change.
In our experiments, using the instantaneous latency allowed PE-
GASUS to update the power limit approximately once every 5
seconds. However, the measured SLO latency is still used as an
emergency stop. If PEGASUS causes the SLO to be violated,
then it should back off and not interfere with the OLDI work-
load. The reasoning behind this is that SLO violations are typ-
ically caused by excessive load and, in these situations, PEGA-
SUS should not attempt to save power. When adjusting to save
power, our policy for search takes very tiny steps to avoid riding
the steep slope of the latency curve near the knee. Large pertur-

Let X = Measured SLO Latency,
Y = Measured Instantaneous Latency, T = SLOtarget

Input Action
X > T Set max power, wait 5 minutes
Y > 1.35T Set max power
Y > T Increase power by 7%
0.85T ≤ Y ≤ T Keep current power
Y < 0.85T Lower power by 1%
Y < 0.60T Lower power by 3%

Table 1. PEGASUS policy for search.

bations near the knee can cause an order of magnitude increase in
latency. Therefore, PEGASUS adopts a very cautious wait-and-
see control scheme when the latency headroom is small. The
policy also includes a built-in margin for the latency headroom
where it will keep the current power setting. This margin is to ac-
count for noise in the latency measurement caused by variations
in load as well as the differences between each search query.

As before, the baseline point for comparison uses the default
power manager that races to idle, cpuidle. We measure full sys-
tem power for the entire cluster as well as query latency through-
out the entire duration of the run.

5.2.1. Small Cluster Results: We first evaluate PEGASUS on
an experimentation cluster that contains tens of servers. We scale
the portion of the search index used to the memory capacity of
the cluster. Because we are using a smaller dataset (index) and
a smaller fan-out, the SLO target used in this experiment is a
fraction of the SLO target of the production cluster.

Figure 13 shows the results of running the 24-hour trace de-
scribed previously with and without PEGASUS. First, we note
from the latency comparison graph that PEGASUS is able to
meet the SLO target just as well as the baseline. In addition, the
query latency with PEGASUS is flat, showing that PEGASUS is
operating the cluster no faster than it deems necessary. Note that
both the baseline and PEGASUS occasionally has small SLO vi-
olations (latency above 1.0). However, PEGASUS introduces no
new SLO violations: it fails to meet the SLO in exactly the same
cases as the baseline. These SLO violations are unavoidable as
they are caused by load spikes exceeding the provisioned capac-
ity of the cluster. Indeed, PEGASUS was not even attempting to
save power at those points. Looking at the power graph for the
first half of the experiment where SLO violations occur, the base-
line and PEGASUS curves are identical. PEGASUS recognized
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that there was not sufficient latency headroom to attempt power
reduction measures.

The power savings graph in Figure 13 shows that PEGASUS
achieves most of the theoretical potential of iso-latency. During
the low utilization portion of the diurnal load pattern, PEGA-
SUS saves 30% power compared to the baseline. This result
establishes that the potential of iso-latency can be achieved with
a relatively simple controller. Moreover, the power consump-
tion graph shows that PEGASUS turns the cluster into an energy
proportional one for search, if idle power is excluded. PEGA-
SUS successfully trades off latency headroom for power savings.
Over the entire 24 hour run, PEGASUS was able to save 11% to-
tal energy compared to the baseline. The overall energy savings
are capped by the portion of time search operates close to peak
capacity in the trace (roughly half of the time). Nevertheless, the
power and energy savings from PEGASUS are essentially free,
as these savings do not result in additional SLO violations.

5.2.2. Production Cluster Results: We also evaluated PEGA-
SUS on a full scale, production cluster for search at Google,
which includes thousands of servers. The salient differences be-
tween the full production cluster and the small cluster are that
many more servers are available and that the entire search index
is used. We also use the production level SLO latency target. For
the production cluster experiments, we re-used the 24-hour trace
discussed above in order to obtain an apples-to-apples compar-
ison between the baseline and PEGASUS (two runs). We only
use the 12 hours of the trace that contain the load trough and run
it both with PEGASUS and the baseline approach because we
are confident from the small cluster results that PEGASUS can
successfully detect periods of peak utilization and operate the
cluster at peak performance when needed. The 12 hours contain-
ing the trough characterize how effectively PEGASUS can turn
the theoretical power savings of iso-latency into practical ones.

Figure 14 presents the results on the production cluster. The
latency graph shows that PEGASUS did not cause any additional
SLO violations compared to the baseline. This demonstrates that
the enforcement portion of PEGASUS can scale out to thousands
of nodes without issues. This result should not be surprising,
because search must manage thousands of nodes as well. Dis-
tributing PEGASUS messages to thousands of servers is not that
different from distributing queries to thousands of leafs. It can be
done quickly in a coordinated manner. Compared with the traffic
that search generates itself, PEGASUS messages to servers are
rare and are a tiny fraction of overall traffic.

Nevertheless, we do observe several issues that only emerge
at scale. The delay between iterations for PEGASUS needed
to be increased (from 3 to 4 seconds) due to the increased iner-
tia of queries within the cluster. Namely, when the power limit
changed, the observed query latency evolved more slowly com-
pared to that on the small cluster. Another issue is that PEGA-
SUS is not able to save as much power on the full cluster as
compared to the small cluster. In Figure 14, we observe power
savings between 10% and 20% during the period of low utiliza-
tion, compared to 30% in the small cluster. The reason is that
PEGASUS applies uniform RAPL settings across all the servers
with the assumption that all servers have the same CPU utiliza-
tion. However, when scaling to thousands of nodes, this is no
longer the case. We examined the distribution of CPU utiliza-

tions across the leaf servers and observed a wide variance across
the nodes. For instance, when running at peak utilization, we
observed that 50% of the nodes were operating at below 85%
peak CPU utilization. At the same time, a tiny fraction (0.2%) of
nodes were operating at 100% peak CPU utilization.

The existence of these hot nodes is due to the amount of work
per query varying depending on the hotness of the index shard
for the leaf node. Because search must wait for all leaf nodes
to finish processing a single query before it can return results
to the user, the entire cluster is bottlenecked by these hot nodes.
The use of a single power limit forces all servers to run as fast
as the small fraction of hot leaf nodes, significantly reducing the
realized power savings. This is a challenge at large-scale that
is not obvious from the small cluster results and demonstrates
the difficulties in adapting a control scheme that works well for
smaller clusters to a cluster with thousands of nodes.

The solution to the hot leaf problem is fairly straightforward:
implement a distributed controller on each server that keeps the
leaf latency at a certain latency goal. The latency goal would
be communicated by the centralized controller that can monitor
latency and SLO challenges at the root of the search tree. Us-
ing such a distributed approach, only the hot leafs would be run
faster to allow the overall SLO target to be met, while the vast
majority of leafs would be run at a much lower power. Compared
to the simple, centralized version of PEGASUS, the distributed
version would be more complicated to implement. However,
distributed PEGASUS would be far more efficient at extracting
power savings. It would also respond to latency transients faster.
For instance, the centralized PEGASUS can only detect an im-
pending latency problem when all of the queues in the search
tree start to fill up, while distributed PEGASUS would be able
to detect and act on individual queues filling up. Moreover, the
distributed controller would be able to deal with heterogeneous
server configurations in the cluster.

Unfortunately, due to scheduling constraints for the produc-
tion cluster, we were unable to evaluate distributed PEGASUS in
time for the paper submission. However, we estimated the power
savings that can be achieved with this distributed controller. We
measured the distribution of CPU utilization on the search clus-
ter and combined it with the diurnal load curve to estimate how
much power the distributed controller would be able to save. We
show the results of our estimation in Figure 15. The distributed
controller is estimated to perform much better than the uniform
PEGASUS controller, saving up to 35% power over the baseline.
This is comparable with the results from the small cluster, which
shows that an idealized version of distributed PEGASUS can re-
cover all of the power savings that were lost to using a uniform
power limit. We also see that distributed PEGASUS has the op-
portunity to save power during periods of peak utilization, as it
can save power on non-hot leaf nodes.

6 Related Work
There has been substantial work related to saving power for

datacenter workloads. Ranganathan et. al propose a power bud-
geting approach that budgets for an “ensemble” of servers to
take advantage of the rarity of concurrent load spikes in order
to increase energy efficiency [36]. Raghavendra et. al propose a
coordinated power management architecture for datacenters that
integrates several otherwise disparate controllers together with-
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Figure 14. Results of running PEGASUS for search on the full production cluster.
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Figure 15. Estimation of power when using distributed PEGASUS.

out the different controllers interfering internally with each other
[34]. PowerNap tackles the energy proportionality problem by
having an enhanced “nap” state that is very low power and has
low wakeup latencies [28]. Similarly, Blink advocates the use
of server low power states that essentially turn off servers[41].
However, OLDI workloads are not amenable to having individ-
ual nodes turned off. Meisner et. al showed that coordinated
full-system low power modes are needed to achieve energy pro-
portionality for OLDI workloads [29], which is the approach we
take. Managing MapReduce clusters for energy efficiency has
also been widely explored[24, 22, 9], but these consolidation-
based techniques are not applicable for OLDI workloads with
tight latency constraints and large dataset footprints.

There are many studies on optimizing energy efficiency of
CPUs through the use of DVFS. However, many of those ap-
proaches are not applicable to OLDI workloads. Many pro-
posals are geared towards batch workloads without latency re-
quirements. Namely, these DVFS systems improve the en-
ergy efficiency of throughput oriented jobs, but they do not
make any guarantees on the absolute latency of the job nor
do they use the observed latency to inform the DVFS decision
[18, 45, 35, 43, 21, 23, 16]. This is not acceptable for OLDI
workloads, where the SLO latency is critical. There are also
DVFS schemes that aim to maximize energy efficiency of real-
time systems where jobs have deadlines [30, 6, 42, 26, 38]. How-
ever, these systems have several limitations that make them im-
practical for OLDI workloads. The first is that both the number
and length of jobs must be known ahead of time, which conflicts

with the dynamic nature of OLDI workloads. The second is that
these control schemes are designed for single node systems; this
is not a good fit for OLDI workloads, which run on potentially
thousands of servers.

Another way to improve energy efficiency is to use otherwise
idle resources on OLDI servers to perform useful work. For ex-
ample, if search operates at 50% utilization, we can fill up the
remainder of the cluster with batch workloads that would oth-
erwise be running on other servers. This approach improves
energy efficiency by operating servers in their most power ef-
ficient mode and can save on capital expenses for batch servers.
However, workload co-location has several challenges, including
resource provisioning (e.g., removing memory from the search
index so that batch workloads can use it) and interference man-
agement so that SLO violations are avoided [32, 19, 39, 10, 14,
27, 46]. Investigation of the interactions of co-location with iso-
latency is beyond the scope of this work.

7 Conclusions
We presented PEGASUS, a feedback-based controller

that implements iso-latency power management policy for
large-scale, latency-critical workloads: it adjusts the power-
performance settings of servers in a fine-grain manner so that
the overall workload barely meets its latency constraints for user
queries at any load. We demonstrated PEGASUS on a Google
search cluster. We showed that it preserves SLO latency guar-
antees and can achieve significant power savings during periods
of low or medium utilization (20% to 40% savings). We also es-
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tablished that overall workload latency is a better control signal
for power management compared to CPU utilization. Overall,
iso-latency provides a significant step forward towards the goal
of energy proportionality for one of the challenging classes of
large-scale, low-latency workloads.
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